STA 131 B: Mathematical Statistics	Spring 2024
Homework 1	
Lecturer: Hang Zhou	Due date: 4:00pm, April 11

Homework is a crucial step in your learning journey for this course, enriching your understanding of mathematical statistics. I strongly suggest you spend time on it and complete it independently.

Question 1: Consider the multivariate normal distribution $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu}$ is a p-dimensional vector and $\boldsymbol{\Sigma}$ is a $p \times p$ covariance matrix. What is the parameter space for $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$?

Question 2: $X_1, \ldots, X_n \sim_{i.i.d.} \mathcal{N}(\mu, 1)$. Find the MLE of μ .

Г

Question 3: $X_1, \ldots, X_n \sim_{i.i.d.} \mathcal{N}(0, \sigma^2)$. Find the MLE of σ^2 .

Question 4: A certain type of electronic component has a lifetime Y (in hours) with probability density function given by

$$f(y|\theta) = \begin{cases} \left(\frac{1}{\theta^2}\right) y e^{-y/\theta}, & y > 0, \\ 0, & \text{otherwise.} \end{cases}$$

That is, Y has a gamma distribution with parameters $\alpha = 2$ and θ . Find the MLE of θ .