STA 131 B: Mathematical Statistics	Spring 2024
Homework 2	
Lecturer: Hang Zhou	Due date: 2:00pm, April 18

Homework is a crucial step in your learning journey for this course, enriching your understanding of mathematical statistics. I strongly suggest you spend time on it and complete it independently.

Question 1: Assume $X_i \sim_{i.i.d.} \text{Unif}([\theta, \theta + 1]), \Theta \in \mathbb{R}$. Find the MLE of θ .

Question 2: Assume $X_i \sim_{i.i.d.} \text{Exponential}(\lambda)$, that is, the exponential distribution with parameter λ , with pdf

$$f(x|\lambda) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

The parameter space $\Theta = (0, \infty)$. Assume at least one X_i is non-zero, find the MLE of λ .

Question 3: Assume $X_i \sim_{i.i.d} \text{Unif}([\alpha, \beta])$. The pdf for X_i is

$$f(x|\alpha,\beta) = \begin{cases} \frac{1}{\beta-\alpha} & \text{if } \alpha \le x \le \beta\\ 0 & \text{otherwise} \end{cases}.$$

- a). Write down a reasonable parameter space for $\theta = (\alpha, \beta)$.
- b). Find the methods of moments estimator for α and β .

[hints: you may need the equality $b^2 - a^2 = (b - a)(b + a)$ and $b^3 - a^3 = (b - a)(a^2 + ab + b^2)$]

Question 4: Suppose X_1, X_2, \ldots, X_n are i.i.d. random variables with density function

$$f(x|\sigma) = \frac{1}{2\sigma} \exp\left(-\frac{|x|}{\sigma}\right), \ \theta \in \Theta = (0,\infty).$$

- a). Assume at least one X_i is none-zero, find the maximum likelihood estimate of σ .
- b). Find the methods of moments estimator of σ .

[hints: 1. if f is an odd function, that is f(x) = -f(-x), then $\int_{-a}^{a} f(x)dx = 0$ for all a > 0. 2. you can use *Integration by parts* https://en.wikipedia.org/wiki/Integration_by_parts to calculate the integral $\int y^2 e^{-y} dy$ and $\int y e^{-y} dy$.]