STA 131 B: Mathematical Statistics	Spring 2024
Homework 3	
Lecturer: Hang Zhou	Due date: 2:00pm, May 2

Homework is a crucial step in your learning journey for this course, enriching your understanding of mathematical statistics. I strongly suggest you spend time on it and complete it independently.

Question 1: Assume $X_1, \ldots, X_n \sim_{i.i.d.} \mathcal{N}(\mu, \sigma_0^2)$ with unknown mean μ and known variance σ_0^2 . Assume the prior distribution for μ is $\mu \sim \mathcal{N}(\eta, \delta^2)$. Find the posterior distribution of μ .

Question 2: Assume $X_i \sim_{i.i.d.} \text{Exponential}(\lambda)$, that is, the exponential distribution with parameter λ , with pdf

$$f(x|\lambda) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}.$$

Assume the prior distribution for λ is $\lambda \sim \Gamma(\alpha, \beta)$.

- a) Find the posterior distribution of λ .
- b) Find the Bayes estimator of λ .

Г

hint: if $X \sim \Gamma(\alpha, \beta)$, then the pdf of X is

$$f(x|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}.$$

 $\mathbb{E}(X) = \alpha \beta^{-1}, \, \mathbb{E}(X^2) = \alpha (\alpha + 1) \beta^{-2}.$

Question 3: Assume $X_i \sim_{i.i.d.} \text{Poisson}(\theta)$, that is, the Poisson distribution with parameter θ , with pdf

$$f(x|\theta) = \frac{e^{-\theta}\theta^{X_i}}{X_i!}$$

Assume the prior distribution for θ is $\theta \sim \Gamma(\alpha, \beta)$.

- a) Find the posterior distribution of θ .
- b) Find the Bayes estimator of θ .

Question 4: Assume $X_i \sim_{i.i.d.} \text{Unif}([0, \theta])$. Assume the prior distribution for θ is $\theta \sim \text{Pareto}(x_0, \alpha)$ with pdf

$$f\left(\theta \mid x_{0}, \alpha\right) = \frac{\alpha x_{0}^{\alpha}}{\theta^{\alpha+1}} \mathbb{1}_{\left\{\theta \geq x_{0}\right\}}, x_{0} > 0.$$

Find the posterior distribution of θ .