STA 131 B: Mathematical Statistics	Spring 2024
Homework 6	
Lecturer: Hang Zhou	Due date: 2:00pm, May 30

Homework is a crucial step in your learning journey for this course, enriching your understanding of mathematical statistics. I strongly suggest you spend time on it and complete it independently.

Question 1: Assume $X_1 \ldots, X_n$ are random samples from the distribution with pdf

$$f(x|\theta) = \theta^2 x e^{-\theta x} \mathbb{1}_{\{x>0\}}.$$

Find the UMVUE of θ^{-1} . [*hint*]:

• The probability density function for the Gamma distribution $X \sim \text{Gamma}(\alpha, \beta)$ is

$$f(x|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$$
 for $x > 0$.

- If $X \sim \text{Gamma}(\alpha, \beta)$, $\mathbb{E}(X) = \alpha/\beta$.
- $T = \sum_{i=1}^{n} X_i \sim \text{Gamma}(2n, \theta).$

Question 2: Assume $X_1 \ldots, X_n$ are random samples from $Poisson(\lambda)$ with pmf

$$f(x|\theta) = \frac{\lambda^{x} e^{-\lambda}}{x!}$$
 for $x = 0, 1, 2,$

Find the UMVUE of λ . [hint]:

- If $X \sim \text{Poisson}(\lambda)$, $\mathbb{E}(X) = \lambda$.
- $T = \sum_{i=1}^{n} X_i \sim \text{Poisson}(n\lambda).$

Question 3: Assume $X_1 \ldots, X_n$ are random samples from $Poisson(\lambda)$ with pmf

$$f(x|\theta) = \frac{\lambda^{x} e^{-\lambda}}{x!}$$
 for $x = 0, 1, 2,$

Find the CR lower bound of unbiased estimators of λ .

Question 4: Assume $X_1 \ldots, X_n$ are random samples from Exponential(λ) with pdf

$$f(x|\lambda) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0. \end{cases}$$

Find the CR lower bound of unbiased estimators of $1/\lambda$.