Theory of functional principal components analysis for noisy and discretely observed data

Hang Zhou $^{\rm 1}$

Department of Statistics University of California, Davis

¹jointly with Fang Yao and Dongyi Wei

Functional data

- A sample of subjects or experimental unit: one or more functions $X(t), t \in \mathcal{T}$, for each subject. WLOG, let $\mathcal{T} = [0, 1]$.
- Commonly adopted perspectives in FDA:
 - stochastic processes with smooth trajectories;
 - random element in a Hilbert space.
- Infinite dimensionality and smoothness
 - slowly diverging ranks, structural information ;
 - "bless of dimensionality": more measurements help, in contrast to high-dimensional data.

Designs of functional data

- Fully observed (ideal): $X_i(t)$ available for all $t \in \mathcal{T}$.
- Discretely observed (realistic): measurements are taken at discrete time points with noise: X_{ij} = X_i(t_{ij}) + ε_{ij}, i = 1,..., n; j = 1..., N.

• Q: How the discrete observations affect the estimation and convergence rate?

Estimation of mean and covariance

- Mean function $\mu(t) = E\{X(t)\}, t \in \mathcal{T}$
- Covariance function $C(s, t) = cov\{X(s), X(t)\}, s, t \in T$
- Smoothing methods & strategies: kernel, spline, wavelets, ect.
 - pre-smoothing each curve before further analysis
 - pooling observations from all subjects
- Phase transition (\sqrt{n} -consistency) for mean and covariance estimation
 - pre-smoothing: $N \gtrsim n^{5/4}$
 - pooling: $N \gtrsim n^{1/4}$
- Related to the smoothness nature of functional data, no regularization is considered.

Literature: smoothing mean and covariance

2005	Pre-smoothing each curves before subsequent analysis (Ramsay and Silverman, 2005).
2005	Pooling method for sparsely observed functional data (kernel) (Yao, Müller and Wang , 2005).
2010	Uniform convergence rates for mean & covariance estimation (kernel) (Li and Hsing, 2010).
2011	Phase transition for mean & covariance estimation (spline, RKHS) (Cai and Yuan, 2010 & 2011).
2016	Unified theory for mean & covariance estimation (kernel) (Zhang and Wang, 2016).

Q: How the discretization and noise contamination affect the dimension reduction via FPCA?

Zhou (UCD)

Representation of functional data

Assume that X is a random process in $L^2(T)$ with covariance function

$$C(s,t) = \sum_{k=1}^{\infty} \lambda_k \phi_k(s) \phi_k(t), \quad s,t \in \mathcal{T}$$

with the ordered eigenvalues $\lambda_1 > \lambda_2 > ... > 0$, $\lambda_k \simeq k^{-a}$, and orthonormal eigenfunctions $\phi_1, \phi_2, ...$

• Karhunen-Loève expansion

$$X(t) = \mu(t) + \sum_{k=1}^{\infty} \xi_k \phi_k(t), \quad t \in \mathcal{T}$$

where $E(\xi_k) = 0$, $E(\xi_k^2) = \lambda_k$, $E(\xi_k \xi_\ell) = 0$ for $k \neq \ell$.

Infinite-dimensionality and regularization

- Infinite dimensionality:
 - The eigenvalues of C(s, t) tend to zero and do not have a positive lower bound
 - The compact covariance operator $C(f) = \int_0^1 C(s, t)f(s)ds$ is non-invertible.
- Linear regression in \mathbb{R}^d : $Y_i = \langle X_i, \beta \rangle + \varepsilon_i, X_i, \beta \in \mathbb{R}^d$
 - Normal equation: $\beta = (\mathbb{E}X^T X)^{-1} \mathbb{E}X^T Y$
- Regularization is needed in models involving inverse issue
- Typical inverse problems: functional linear regression (FLR), generalized functional linear model (fGLM), functional Cox model, ...

Eigenfunction with diverging index

- E.g., functional linear regression: $Y_i = \langle X_i, \beta \rangle + \varepsilon_i, X_i, \beta \in \mathcal{L}^2$
 - classical plug-in method (Hall and Horowitz, 2007):

$$\hat{\beta}(u) = \sum_{j=1}^{m} \hat{\lambda}_j^{-1} \left(n^{-1} \sum_{i=1}^{n} Y_i X_i, \hat{\phi}_j \right) \hat{\phi}_j(u)$$

- regularization: truncation on the number of FPCs
- necessary to suppress approximation bias: $m = n^{\frac{1}{a+2b}} \rightarrow \infty$
- Highly depend on the convergence rate of a diverging number (with *n*) of eigenfunction estimates.
- Vanishing eigen-gap makes difficult for high-order estimates.
- The impact of discretely observed data is unknown.

Timeline: theory of FPCA

2006	\mathcal{L}^2 bounds for a fixed number of eigenfunctions (kernel, $n^{-4/5}$) (Hall, Müller and Wang, 2006).
2007	Optimal rate $\ \hat{\phi}_k - \phi_k\ ^2 = k^2/n$ obtained for fully observed functions (Hall and Horowitz, 2007).
2009	FPCA for reduced rank model (REML, spline, finite non-zero eigenvalues) (Paul and Peng, 2009).
2010•	\mathcal{L}^2 bounds for a fixed number of eigenfunctions (RKHS, $\log n/n^{4/5}$, tensor space, trivial perturbation bound) (Cai and Yuan, 2010).

Optimal convergence for eigenfunctions with diverging index remains an **open problem** over a decade!

Background

• Denote $\eta_k = |\lambda_k - \lambda_{k+1}|$ and $\Delta = \hat{C} - C$. Denote

$$m_n = \max\{k : \|\hat{C} - C\| < |\lambda_k - \lambda_{k+1}|/2\},\$$

the first order expansion holds

$$\hat{\phi}_k - \phi_k \asymp \sum_{j \neq k} \frac{\langle (\hat{C} - C) \phi_k, \phi_j \rangle}{(\lambda_j - \lambda_k)} \phi_j \quad \text{for all } k \le m_n \tag{1}$$

- $m := m_n$ is the diverging number of eigenfunctions that can be well estimated based on the observed data
- $\|\hat{C} C\| \xrightarrow{p} 0 \text{ as } n \to \infty, \text{ thus } \lambda_{m_n} \to 0 \text{ and } m_n \to \infty.$
- A classic bound can be derived from (1) and Bessel's equality directly:

$$|\hat{\phi}_k - \phi_k|^2 \le ||\hat{C} - C||^2 / \eta_k^2, \qquad k \le m.$$
 (2)

- The bound $\|\hat{\phi}_k \phi_k\|^2 \le \|\hat{C} C\|^2/\eta_k^2$ is clearly not optimal.
- For finite k, this gives $\|\hat{\phi}_k \phi_k\|$ a 2-d smoothing rate, however, - $\phi_k = \lambda_k^{-1} \int C(\cdot, t) \phi_k(t) dt$, integration brings extra smoothness
- For diverging k, this gives k^{2a+2}/n
 - differ from the "fully observed" optimal rate by k^{2a}/n
- We shall resort to the original perturbation series rather than its approximation bound.

$$\|\hat{\phi}_k - \phi_k\|^2 \asymp \sum_{j \neq k} \frac{\langle (\hat{C} - C)\phi_k, \phi_j \rangle^2}{(\lambda_j - \lambda_k)^2}, \text{ for all } k \le m_n$$
(3)

Sharp bound: fully observed

• For all $k \le m := m_n = \max\{I : \|\hat{C} - C\| < |\lambda_I - \lambda_{I+1}|/2\},\$

$$\|\hat{\phi}_k - \phi_k\|^2 \approx \sum_{j \neq k} \frac{\langle (\hat{C} - C)\phi_k, \phi_j \rangle^2}{(\lambda_j - \lambda_k)^2}, \quad k \leq m.$$

- Fully observed: $\hat{C} = n^{-1} \sum_{i=1}^{n} X_i \otimes X_i$ (centered for simplicity), $\mathbb{E} \langle (\hat{C} - C) \phi_k, \phi_j \rangle^2 = \mathbb{E} \left\{ \frac{1}{n} \sum_{i=1}^{n} (\xi_{i,k} - \overline{\xi}_k) (\xi_{i,j} - \overline{\xi}_j) \right\}^2$ $= \lambda_i \lambda_k (1 - n^{-1})^2 / n.$
- Reduction to $\lambda_j \lambda_k$ makes the summation converge w.r.t. *j*.
- $\|\hat{\phi}_k \phi_k\|^2 = \sum_{j \neq k} \lambda_j \lambda_k / (\lambda_j \lambda_k)^2 = O_p(k^2/n)$ is minimax optimal.

Discretely observed

- Estimate C by pooling kernel smoothing (Yao, Müller and Wang, 2005; Zhang and Wang, 2016).
- Without the covariance of fully observed curves, $\mathbb{E}\langle (\hat{C} C)\phi_k, \phi_j \rangle^2$ is no longer the principal scores, but a kernel smoothing rate with bias h^4 and variance n^{-1} (faster due to double integral).
- By Bessel's equality,

$$\mathbb{E}\|\hat{C}-C\|^2 = \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \mathbb{E}\langle (\hat{C}-C)\phi_k, \phi_j \rangle^2.$$

• One cannot sum up $\mathbb{E}\langle (\hat{C} - C)\phi_k, \phi_j \rangle^2 / (\lambda_j - \lambda_k)^2$ w.r.t. all $j \neq k$ in the perturbation series directly.

Key assumption

• Hall, Müller and Wang (2006) assumes that

 $\max_{1\leq j\leq r}\max_{s=0,1,2}\sup_{t\in[0,1]}|\phi_j^{(s)}(t)|\leq \text{Const.}$

which is only valid for a fixed r.

- Fourier basis: $\phi_j(x) = \cos(j\pi x), \phi_j^{(1)}(x) = -j\sin(j\pi x).$
- Generalize this for diverging j

$$\|\phi_{j}^{(s)}(t)\|_{\infty} \lesssim j^{c/2} \|\phi_{j}^{(s-1)}\|_{\infty}$$
 for $s = 1, 2,$

- Higher frequency of ϕ_j for larger *j*, characterized by the amplitudes of its derivatives.
- E.g., Fourier basis: c = 2.

Building block

• $\sum_{\{j:j\neq k\}} \langle (\hat{C} - C)\phi_k, \phi_j \rangle^2 / (\lambda_j - \lambda_k)^2$ is dominated by summation on $\{j: k/2 < j \neq k \leq 2k\}$ for each k.

• This inspires us to treat $\sum_{\{j:j>2k\}} E\langle (\hat{C} - C)\phi_k, \phi_j \rangle^2$ as a whole.

Theorem 1

Denote
$$\Delta = \hat{C} - C$$
, if $h^4 k^{2a+2c} = O(1)$
 $\mathbb{E}(\langle \Delta \phi_j, \phi_k \rangle^2) \lesssim \frac{1}{n} \left(j^{-a} k^{-a} + \frac{j^{-a} + k^{-a}}{N} + \frac{1}{N^2} \right) + h^4 k^{2c-2a}$, for $1 \le j \le 2k$
 $\sum_{j=2k+1}^{\infty} \mathbb{E}(\langle \Delta \phi_j, \phi_k \rangle^2) \lesssim \frac{1}{n} \left(k^{1-2a} + \frac{h^{-1} k^{-a} + k^{1-a}}{N} + \frac{1}{hN^2} \right) + h^4 k^{1+2c-2a}$.

Main results

Theorem 2

Let $\Omega(n, N, h) := \{k : \|\Delta\| \le \eta_k/2, h^4 k^{2a+2c} \le C\}$, denote $m := \max\{k : k \in \Omega(n, N, h)\}$. If $h^4 m^{2a+2c} = O(1)$, $\frac{m^{2a+2}}{n} \to 0, \frac{m^{2a+2}}{nN^2h^2} \to 0, h^4 m^{2a+2} \to 0$, then $\mathbb{P}(\Omega) \to 1$, for all $k \le m$,

$$\mathbb{E}\|\hat{\phi}_{k}-\phi_{k}\|^{2} \lesssim \frac{k^{2}}{n} \left\{1+\left(\frac{k^{a}}{N}\right)^{2}\right\}+\frac{k^{a}}{nNh}\left(1+\frac{k^{a}}{N}\right)+\frac{h^{4}k^{2c+2}}{n}$$

- optimal rate in fully observed case
- variance term caused by kernel smoother
- error caused by decaying eigengaps
- bias term caused by kernel smoother-

Phase transition

Corollary 2.1

Let $m \in \mathbb{N}_+$ satisfies (M.1). For all $k \leq m$ and let $h_{ont}(k) = (nN)^{-1/5} k^{(a-2c-2)/5} (1 + k^a/N)^{1/5}$ $If N \geq k^a.$ $\mathbb{E}(\|\hat{\phi}_k - \phi_k\|^2) \lesssim \frac{k^2}{n} + \frac{k^{(4a+2c+2)/5}}{(nN)^{4/5}}.$ In addition, if $N \ge n^{1/4} k^{a+c/2-2}$, $\mathbb{E}(\|\hat{\phi}_k - \phi_k\|^2) \le k^2/n$. 2 If $N = o(k^a)$, $\mathbb{E}(\|\hat{\phi}_k - \phi_k\|^2) \lesssim \frac{k^{2a+2}}{nN^2} + \frac{k^{(8a+2c+2)/5}}{(nN^2)^{4/5}}.$

Phase transition

- Minimax optimality
 - For fixed k, this becomes the optimal 1-d rate $n^{-1}(1 + (Nh)^{-1}) + h^4$;
 - For $k \to \infty$, if $N \gtrsim \max\{k^a, n^{1/4}k^{a+c/2-2}\}$, $\mathbb{E}(\|\hat{\phi}_k \phi_k\|^2) \lesssim k^2/n$.
- For the Fourier basis with *c* = 2
 - Fixed k, phase transition occurs at $n^{1/4}$ (the same as mean and cov)
 - Diverging k, phase transition occurs at $n^{1/4}k^{a-1}$
 - $n^{1/4}k^{a-1}$ is slightly larger than $n^{1/4}$, reflecting efficiency of pooling smoothing with evaluated difficulty in FPCA.
- Fundamental result for inverse models (e.g., FLR), where the optimal bandwidth can be chosen as $h_{opt}(k_{max})$.

Relative asymptotic normality

Theorem 3

For $m \in \mathbb{N}_+$ satisfying $h(m^{2c} + m^a) = o(1)$ and

$$\begin{split} \sqrt{n}(m^{a}+N)[m^{2}n^{-1}\{1+(j^{a}/N)^{2}\}+m^{a}(nNh)^{-1}(1+m^{a}/N)+h^{4}m^{2c+2}]&=o(1).\\ \Sigma_{n}^{-\frac{1}{2}}\left(\frac{\hat{\lambda}_{j}-\lambda_{j}}{\lambda_{j}}-2\lambda_{j}\sigma_{K}^{2}h^{2}\int_{h}^{1-h}\phi_{j}^{(2)}(u)\phi_{j}(u)\mathrm{d}u\right)\overset{d}{\longrightarrow}\mathcal{N}(0,1),\ j\leq m, \end{split}$$

where

$$\begin{split} \Sigma_n &= \frac{1}{n} \left[\frac{(N-2)(N-3)}{N(N-1)} \frac{\mathbb{E}(\xi_j^4)}{\lambda_j^2} + \frac{4(N-2)}{N(N-1)} \frac{\mathbb{E}\{\xi_j^2(\|X\phi_j\|^2 + \sigma_X^2)\}}{\lambda_j^2} \right. \\ &\left. + \frac{2}{N(N-1)} \frac{\mathbb{E}\{(\|X\phi_j\|^2 + \sigma_X^2)^2\}}{\lambda_j^2} - 1 \right]. \end{split}$$

Phase transition

Corollary 4.1

$$If N\lambda_{j} \rightarrow \infty, \sqrt{n}\lambda_{j}h^{2}\int_{h}^{1-h}\phi_{j}^{(2)}(u)\phi_{j}(u)du \rightarrow 0, \sqrt{n}\left(\frac{\hat{\lambda}_{j}-\lambda_{j}}{\lambda_{j}}\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, \frac{\mathbb{E}(\xi_{j}^{4})-\lambda_{j}^{2}}{\lambda_{j}^{2}}\right).$$

$$If N\lambda_{j} \rightarrow C_{1}, \sqrt{n}\left(\frac{\hat{\lambda}_{j}-\lambda_{j}}{\lambda_{j}}-2\lambda_{j}\sigma_{K}^{2}h^{2}\int_{h}^{1-h}\phi_{j}^{(2)}(u)\phi_{j}(u)du\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, \frac{\mathbb{E}(\xi_{j}^{4})-\lambda_{j}^{2}}{\lambda_{j}^{2}}+\frac{4\mathbb{E}\{\xi_{j}^{2}(\|X\phi_{j}\|^{2}+\sigma_{X}^{2})\}}{C_{1}\lambda_{j}}+\frac{2\mathbb{E}\{(\|X\phi_{j}\|^{2}+\sigma_{X}^{2})^{2}\}}{C_{1}^{2}}\right)
 If N\lambda_{j} \rightarrow 0, \sqrt{n}N\lambda_{j}\left(\frac{\hat{\lambda}_{j}-\lambda_{j}}{\lambda_{j}}-2\lambda_{j}\sigma_{K}^{2}h^{2}\int_{h}^{1-h}\phi_{j}^{(2)}(u)\phi_{j}(u)du\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, \frac{2N}{N-1}\mathbb{E}\{(\|X\phi_{j}\|^{2}+\sigma_{X}^{2})^{2}\}\right).$$

Uniform convergence of eigenfunctions

Theorem 4

Let $k_{\max} \in \mathbb{N}_+$ satisfy $hk_{\max} \le 1$, $h^4 k_{\max}^{2a+2c} \le 1$ and $\mathbb{P}(\Omega_u) \to 1$ with $\Omega_u := \{ \|\Delta\|_{HS} \le \eta_{k_{\max}}/2, \|\Delta\|_{\infty} k_{\max}^a \le 1, \|\Delta\|_{HS} k_{\max}^{a+1} \le 1 \}$, for $k \le k_{\max}$,

$$\mathbb{E}(\|\hat{\phi}_{k} - \phi_{k}\|_{\infty}) \lesssim \frac{k}{\sqrt{n}} (\sqrt{\ln n} + \ln k) \left\{ 1 + \frac{k^{a}}{N} + \sqrt{\frac{k^{a-1}}{Nh}} \left(1 + \sqrt{\frac{k^{a}}{N}} \right) \right\} + k^{a} \left| \frac{\ln n}{n} \right|^{1 - \frac{1}{\beta}} \left| k^{1/2} + \frac{\ln n}{Nh} \right|^{1 - \frac{1}{\beta}} h^{-\frac{1}{\beta}} + h^{2} k^{c+1} \log k.$$
(4)

- When $\beta > 5/2$, the truncation bias is dominated by the other terms.
- When N is sufficiently large, we may obtain the optimal uniform rate.

Functional linear regression

• Y_i: scalar response

β

$$Y_i = \int_{\mathcal{T}} X_i(t)\beta(t) dt + \varepsilon_i$$

 $\in \mathcal{L}^2[0,1], \mathbb{E}\varepsilon_i = 0 \text{ and } \mathbb{E}\varepsilon_i^2 < \infty.$

•
$$\beta = \sum_{k=1}^{\infty} b_k \phi_k, \ |b_k| \le Ck^{-b}, \ b > a/2 + 1$$

• Plug-in method (Hall and Horowitz, 2007):

$$\sum_{j=1}^{m} \hat{\lambda}_{j}^{-1} \left\langle \frac{1}{n} \sum_{i=1}^{n} Y_{i} X_{i}, \hat{\phi}_{j} \right\rangle \hat{\phi}_{j}(u)$$

• To suppress the truncation bias: $m \asymp n^{1/(a+2b)} \to \infty$.

Timeline: theory of $\ensuremath{\mathsf{FLR}}$

2005	Function on function regression based on sparse FPCA (Yao, Müller and Wang, 2005).
2007	The optimal rate of FLM for fully observed data (Hall and Horowitz, 2007).
2010	The optimal estimation and prediction of FLM for fully observed data by RKHS (Cai and Yuan, 2010 and 2012).
2012	The optimal rate of fGLM for fully observed data by FPCA and change of measure (Dou, Pollard and Zhou, 2012).
2022	Phase transition in FLM for discrete observed data by improved FPCA results (Zhou, Yao and Zhang, 2022).

Application in FLR

• Apply our results in the Plug-in estimator,

$b \ge a - c$	с	b < a – c		
Sampling rate	$\ \hat{\beta} - \beta\ ^2$	Sampling rate	$\ \hat{\beta} - \beta\ ^2$	
$N > n^{\frac{1}{4} + \frac{a+2c}{4(a+2b)}}$	$n^{\frac{1-2b}{a+2b}}$	$N > n^{\frac{1}{4} + \frac{3a-2b}{4(a+2b)}}$	$n^{\frac{1-2b}{a+2b}}$	
$n^{\frac{2a}{a+5b+c}} \le N < n^{\frac{a+b+c}{2a+4b}}$	$(nN)^{\frac{2(1-2b)}{3a+5b+c}}$	$n^{\frac{a+b+c}{3a+3b-c}} \le N < n^{\frac{a}{a+2b}}$	$(nN)^{\frac{(1-2b)}{2a+2b}}$	
$N < n^{\frac{2a}{a+5b+c}}$	$(nN^2)^{\frac{2(1-2b)}{5a+5b+c}}$	$N < n^{\frac{a+b+c}{3a+3b-c}}$	$(nN^2)^{\frac{2(1-2b)}{5a+5b+c}}$	

- The transition point is slightly larger than $n^{1/4}$ but smaller than $n^{1/2}$, reflecting the elevated difficulty due to FPC regularization.
- Result improved compared to Zhou, Yao and Zhang (2022).

References

- Bhatia, R., Davis, C., & McIntosh, A. (1983). Perturbation of spectral subspaces and solution of linear operator equations. *Linear Algebra Appl.*, **52**, 45-67.
- Yao, F., Müller, H. G., & Wang, J. L. (2005). Functional data analysis for sparse longitudinal data. JASA, 100(470), 577-590.
- Yao, F., Müller, H. G., & Wang, J. L. (2005). Functional linear regression analysis for longitudinal data. Ann. Statist., 2873-2903.
- Ramsay, J. & Silverman, B. (2005). Functional Data Analysis. Springer Science & Business Media.
- Hall, P., Müller, H. G., & Wang, J. L. (2006). Properties of principal component methods for functional and longitudinal data analysis. *Ann. Statist.*, 34, 1493-1517.
- Hall, P. & Horowitz, J. L. (2007). Methodology and convergence rates for functional linear regression. *Ann. Statist.*, **35**, 70-91.
- Paul, D., & Peng, J. (2009). Consistency of restricted maximum likelihood estimators of principal components. *Ann. Statist.*, 1229-1271.

References

- Cai, T., & Yuan, M. (2010). Nonparametric covariance function estimation for functional and longitudinal data. Technical report, UPenn and Georgia Tech.
- Cai, T. T., & Yuan, M. (2011). Optimal estimation of the mean function based on discretely sampled functional data: Phase transition. Ann. Statist., 2330-2355.
- Cai, T. T., & Yuan, M. (2012). Minimax and adaptive prediction for functional linear regression. JASA, 107(499), 1201-1216..
- Dou, W. W., Pollard, D., & Zhou, H. H. (2012). Estimation in functional regression for general exponential families Ann. Statist., 40, 2421-2451.
- Li, Y. & Hsing, T. (2016). Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data. *Ann. Statist.*, 38, 3321-3351.
- Zhang, X. & Wang, J.-L. (2016). From sparse to dense functional data and beyond. Ann. Statist., 44, 2281-2321.
- Zhou, H., Yao, F., & Zhang, H. (2022). Functional linear regression for discretely observed data: from ideal to reality. *Biometrika*, doi.org/10.1093/biomet/asac053.

Thank You!

Uniform convergence of covariance

- Uniform convergence rate of $L(s, t) = \sum_{i=1}^{n} v_i \sum_{1 \le j \ne l \le N_i} K\left(\frac{T_{ij}-s}{h_{\gamma}}\right) K\left(\frac{T_{il}-t}{h_{\gamma}}\right) X_{ij} X_{il},$
- Discretization: Let $\chi(\rho)$ be an mesh grid on $[0,1]^2$ with grid size $n^{-\rho}$ sup $|L(s,t) - \mathbb{E}L(s,t)| \le \sup |L(s,t) - \mathbb{E}L(s,t)| + o_{\rho}$

$$s_{t\in[0,1]} = s_{t\in\chi(\gamma)} = s_{t\in\chi(\gamma)}$$

• Truncation:

$$\mathbf{L}^{*}(s,t) = \sum_{i=1}^{n} v_{i} \sum_{1 \leq j \neq l \leq N_{i}} K\left(\frac{T_{ij}-s}{h_{\gamma}}\right) K\left(\frac{T_{il}-t}{h_{\gamma}}\right) X_{ij} X_{il} \mathbf{1}_{\{|X_{ij}X_{il}| \leq B_{n}\}}$$

Bernstein inequality:

 $P(\sup_{s,t} |L^*(s,t) - \mathbb{E}L^*(s,t)| > Mb_n) \le 2n^{\rho} \exp\left(-\frac{M^2 b_n^2}{M'_U b_n^2 / \log n + 2B' M_K^2 B_n / n}\right)$

with $b_n = \{\log(n) \left[\sum_{i=1}^n N_i (N_i - 1) v_i^2 h_\gamma^2 + \sum_{i=1}^n N_i (N_i - 1) (N_i - 2) v_i^2 h_\gamma^3 + \sum_{i=1}^n N_i (N_i - 1) (N_i - 2) (N_i - 3) v_i^2 h_\gamma^4 \}^{1/2} \text{ and } B_n = b_n [n/\log(n)].$

Issue with uniform convergence

Assume E ||X||^{2β}_∞ < ∞, the following is needed to suppress the truncation bias (Li and Hsing, 2010, Zhang and Wang (2016)),

$$\left(N^{-2}h^2 + N^{-1}h^3 + h^4\right) \left(\frac{\log n}{n}\right)^{2/\beta - 1} \longrightarrow \infty$$

- For sparse case $N/(n/\log n)^{1/4} \to 0$ and $h \asymp (nN^2/\log n)^{-1/6}$, let $N \asymp n^{\tau/4}$ $\frac{h^2}{N^2} \left(\frac{\log n}{n}\right)^{2/\beta - 1} \to \infty \Longrightarrow \beta > \frac{3}{1 - \tau}.$
- For dense case N/(n/log n)^{1/4} ≥ C and h ≍ (n/log n)^{-1/4}, this leads to a contradiction

$$\frac{h^2}{N^2} \left(\frac{\log n}{n}\right)^{2/\beta-1} \le \left(\frac{\log n}{n}\right)^{2/\beta} \longrightarrow 0$$

Double truncation

- The bound $L_i^*(s, t) \leq B_n/n$ is too loose.
- Denote $J_i(s) = h^{-1} \sum_{l=1}^N K\left(\frac{T_{il}-s}{h}\right)$, given M > 0

 $\mathbb{P}\left(J_i(s) > M\right) \le \exp(-MNh/3)$

$$h^{-2}L_{i}^{*}(s,t) = \frac{1}{n} \frac{h^{-2}}{N(N-1)} \sum_{1 \le l_{1} \ne l_{2} \le N} K\left(\frac{T_{il_{1}}-s}{h}\right) K\left(\frac{T_{il_{2}}-t}{h}\right) X_{il_{1}} X_{il_{2}} \mathbf{1}_{(|X_{il_{1}}X_{il_{2}}| \le B_{n})} \\ \le B_{n} \frac{1}{n} \frac{N}{N-1} J_{i}(s) J_{i}(t).$$

• $\mathbb{P}\left(\left|L_i^*(s,t)\right| > B_n h^2 \frac{1}{n} \frac{NM^2}{N-1}\right) \le 2\exp(-MNh/3).$

• Double truncation: $\widetilde{L}_i^*(s,t) = L_i^*(s,t) \left[\mathbf{1}_{(|L_i^*(s,t)| \le B_n h^2 \frac{1}{n} \frac{NM^2}{N-1})} \right]$

• After twice truncation $\tilde{C}_*(s,t) = h^{-2} \sum_{i=1}^n \widetilde{L}_i^*(s,t)$.

$$\begin{split} & \mathbb{E}\left[\sup_{s,t\in[0,1]} |\hat{C}(s,t) - \mathbb{E}\hat{C}(s,t)|\right] \leq \mathbb{E}\left[\sup_{(s,t)\in\chi(\rho)} |\tilde{C}_*(s,t) - \mathbb{E}\tilde{C}_*(s,t)|\right] \\ &+ \left[\mathbb{E}|D_1 + D_2|\right] + \left[\mathbb{E}|E_1 + E_2|\right] + \left[\mathbb{E}|F_1 + F_2|\right] \\ \leq & \text{Const.}\left[\sqrt{\frac{\rho\ln n}{n}}\left(1 + \frac{1}{Nh}\right) + B_n \frac{1}{n}M^2\rho\ln n\right] + \left[\frac{\text{Const.}n^{-\rho}h^{-3}}{n}\right] \\ &+ \left[\frac{\text{Const.}B_n^{1-\beta}h^{-2}}{n}\right] + \left[\frac{\text{Const.}n^{2\rho}\left(1 + \frac{1}{Nh}\right)\exp(-MNh/6)}{n}\right]. \end{split}$$

• We can choose larger B_n to eliminate the model bias. • Go Back!

Uniform convergence of covariance

• We propose a double truncation technique, and derive a sharper bound for the truncated bias (details).

Theorem 5

$$\mathbb{E}\left\{\sup_{s,t\in[0,1]} |\hat{C}(s,t) - \mathbb{E}\hat{C}(s,t)|\right\}$$

$$\lesssim \sqrt{\frac{\ln n}{n}\left(1 + \frac{1}{Nh}\right)} + \frac{\left|\frac{\ln n}{n}\right|^{1 - \frac{1}{\beta}} \left|1 + \frac{\ln n}{Nh}\right|^{2 - \frac{2}{\beta}} h^{-\frac{2}{\beta}}}{n}.$$

- When β > 3, the truncation bias (yellow) is dominated by main term (green) for all N.
- $\sqrt{\log n/n}$ -convergence can be obtained for dense data, where the phase transition occurs when $N \gtrsim (n/\log n)^{1/4}$.

Uniform convergence of eigenfunctions

Theorem 6

Let $k_{\max} \in \mathbb{N}_+$ satisfy $hk_{\max} \le 1$, $h^4 k_{\max}^{2a+2c} \le 1$ and $\mathbb{P}(\Omega_u) \to 1$ with $\Omega_u := \{ \|\Delta\|_{HS} \le \eta_{k_{\max}}/2, \|\Delta\|_{\infty} k_{\max}^a \le 1, \|\Delta\|_{HS} k_{\max}^{a+1} \le 1 \}$, for $k \le k_{\max}$,

$$\mathbb{E}(\|\hat{\phi}_{k}-\phi_{k}\|_{\infty}) \lesssim \frac{k}{\sqrt{n}} (\sqrt{\ln n} + \ln k) \left\{ 1 + \frac{k^{a}}{N} + \sqrt{\frac{k^{a-1}}{Nh}} \left(1 + \sqrt{\frac{k^{a}}{N}} \right) \right\}$$

$$+ k^{a} \left| \frac{\ln n}{n} \right|^{1-\frac{1}{\beta}} \left| k^{1/2} + \frac{\ln n}{Nh} \right|^{1-\frac{1}{\beta}} h^{-\frac{1}{\beta}} + h^{2}k^{c+1}\log k.$$
(5)

• When $\beta > 5/2$, the truncation bias is dominated by the other terms.

• When *N* is sufficiently large, we may obtain the optimal uniform rate.