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1. Introduction

Functional data

@ A sample of subjects or experimental unit: one or more functions
X(t),teT, for each subject. WLOG, let 7 =[0,1].
@ Commonly adopted perspectives in FDA:

— stochastic processes with smooth trajectories;

— random element in a Hilbert space.

@ Infinite dimensionality and smoothness

— slowly diverging ranks, structural information ;

— "bless of dimensionality”: more measurements help, in contrast to
high-dimensional data.
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1. Introduction

Designs of functional data

o Fully observed (ideal): X;(t) available for all te 7.

o Discretely observed (realistic): measurements are taken at discrete
time points with noise: Xj = Xi(tjj) +ej,i=1,...,nj=1..., N.

Absorbance
Height (cm)

850 900 950 1000 1050 L age
Wavelength

@ Q: How the discrete observations affect the estimation and
convergence rate?
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1. Introduction

Estimation of mean and covariance

@ Mean function pu(t) = E{X(t)}, teT
e Covariance function C(s,t) = cov{X(s), X(t)}, s, teT

@ Smoothing methods & strategies: kernel, spline, wavelets, ect.
— pre-smoothing each curve before further analysis
— pooling observations from all subjects
@ Phase transition (/n-consistency) for mean and covariance estimation
— pre-smoothing: N 3 n°/*
— pooling: Nz n/*
@ Related to the smoothness nature of functional data,

no regularization is considered.
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1. Introduction

Literature: smoothing mean and covariance

Pre-smoothing each curves before subsequent analysis

2005 (Ramsay and Silverman, 2005).
2005 Pooling method for sparsely observed functional data
""" (kernel) (Yao, Miiller and Wang , 2005).
2010 Uniform convergence rates for mean & covariance
'''' estimation (kernel) (Li and Hsing, 2010).
2011 -.... Phase transition for mean & covariance estimation
(spline, RKHS) (Cai and Yuan, 2010 & 2011).
2016 -.... Unified theory for mean & covariance estimation (kernel)

(Zhang and Wang, 2016).

Q: How the discretization and noise contamination affect the dimension
reduction via FPCA?

Zhou (UCD) Theory of FPCA 5/33



1. Introduction

Representation of functional data

Assume that X is a random process in L?(T) with covariance function
C(s t) = > Mow(s)gu(t), s teT
k=1

with the ordered eigenvalues A1 > Ao > ... >0, A\ X k7, and orthonormal
eigenfunctions ¢1, ¢2, .. ..

@ Karhunen-Loéve expansion
X(t)=p(t)+ Y &kdu(t), teT

k=1

where E(&) =0, E(€2) = Ak, E(&k&) =0 for k#L.
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1. Introduction

Infinite-dimensionality and regularization

Infinite dimensionality:

— The eigenvalues of C(s, t) tend to zero and do not have a positive
lower bound

— The compact covariance operator C(f) = fol C(s,t)f(s)ds is
non-invertible.

o Linear regression in RY: Y; = (X;, B) +&;, X;, B ¢ RY
— Normal equation: = (EXTX)'EXTY

Regularization is needed in models involving inverse issue

Typical inverse problems: functional linear regression (FLR),
generalized functional linear model (fGLM), functional Cox model, ...
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1. Introduction

Eigenfunction with diverging index

e E.g., functional linear regression: Y; = (X;, 8) +¢;, X;, B € L2
— classical plug-in method (Hall and Horowitz, 2007):

B0 = 547 (32 85) )
j=1 i-1
— regularization: truncation on the number of FPCs

— necessary to suppress approximation bias: m = n#2 — oo

e Highly depend on the convergence rate of a diverging number (with
n) of eigenfunction estimates.

@ Vanishing eigen-gap makes difficult for high-order estimates.

@ The impact of discretely observed data is unknown.
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Timeline: theory of FPCA

L2 bounds for a fixed number of eigenfunctions (kernel,

2006 - n~*%) (Hall, Miiller and Wang, 2006).

2007 -.... Optimal rate |« — ¢k |2 = k?/n obtained for fully
observed functions (Hall and Horowitz, 2007).

2009 ... FPCA for reduced rank model (REML, spline, finite

non-zero eigenvalues) (Paul and Peng, 2009).

£2 bounds for a fixed number of eigenfunctions (RKHS,
2010 -~ log n/n*/5, tensor space, trivial perturbation bound) (Cai
and Yuan, 2010).

Optimal convergence for eigenfunctions with diverging index remains
an open problem over a decade!
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2. FPCA for discretely observed data

Background
@ Denote 1 = [\ — Aks1| and A = ¢ - C. Denote

my = max{k : |€ = C| < Ak = As1l/2},
the first order expansion holds

R ((E S IIR)
¢k d)k’\j; ()‘j_)‘k)

— m:=m, is the diverging number of eigenfunctions that can be well
estimated based on the observed data

¢; forall k <mj, (1)

~|€-c| 2 0asn— oo, thus A, — 0 and m, — .

@ A classic bound can be derived from (1) and Bessel's equality directly:

|ék = oxl® < I1C = CIP g, k<m. (2)
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2. FPCA for discretely observed data

o The bound |dx — ¢k |? < | € — C|?/n? is clearly not optimal.

e For finite k, this gives |k — ¢«| a 2-d smoothing rate, however,
— ¢x = At [ C(-, t)¢x(t)dt, integration brings extra smoothness

e For diverging k, this gives k%32 /n
— differ from the “fully observed” optimal rate by k%2/n

@ We shall resort to the original perturbation series rather than its
approximation bound.

(€= C)x, 85)°

) )
|k = dxl” < 3. EYESY -

Jj*k

for all k < m, (3)
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Sharp bound: fully observed

For all k < m:=m,=max{/: |C - C| < |\ - A11]/2},

. 2w (€= O, )
||¢k‘¢k” AJ';tZk()\j_—AkF' k<m.

Fully observed: € = n"' £, X; ® X; (centered for simplicity),

n

2
E((C - C)ox, ¢;)? :E{}, Y&k = &) (& —éj)}

i=1

:)\J‘)\k(l - n_l)z/n.

@ Reduction to ;A\, makes the summation converge w.r.t. j.

[0k = ducl? = Zjur MM/ (N = Mk)? = Op(K?/n) is minimax optimal.
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2. FPCA for discretely observed data

Discretely observed

e Estimate C by pooling kernel smoothing (Yao, Miiller and Wang,
2005; Zhang and Wang, 2016).

e Without the covariance of fully observed curves, E((C - C) ¢y, 0;)? is
no longer the principal scores, but a kernel smoothing rate with bias
h* and variance n! (faster due to double integral).

o By Bessel's equality,
E[C - CJ*= % 3E((C - O)én ).

k=1j=1

@ One cannot sum up E((C - C) ¢y, 02 /(N = Ak)? wert. all j # k in
the perturbation series directly.
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2. FPCA for discretely observed data

Key assumption

e Hall, Miller and Wang (2006) assumes that

max max_ sup |¢( )(t)| < Const.
1<j<rs=0,1,2 4, €[0,1]

which is only valid for a fixed r.
e Fourier basis: ¢;(x) = cos(jrx), ¢J(.1)(x) = —jsin(jmx).

o Generalize this for diverging j

0§ (8) o 205" oo for s=1,2,
— Higher frequency of ¢; for larger j, characterized by the amplitudes of

its derivatives.

— E.g., Fourier basis: ¢ =2.
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Building block

® Yyjjek) (€- C)o, 0;)?/(\j — Ak)? is dominated by summation on
{J 1 k/2 <)+ k <2k} for each k.

o This inspires us to treat Y (;.i 0/ E((C - C)éx, ¢;)? as a whole.

Denote A = C - C, if h*k?3*2¢ = O(1)

1 Ty k1
E({(Ag;, ¢k)2) S = (j_ak_a +J+T N2) + h* K222 forl <j<2k
n
= -1,-a =&
Z E(<A¢Jv¢k>2) pS l (kl—Za + h—k+k + 1 2) + h4k1+26_23_
j=2k+1 n N hN

Zhou (UCD) Theory of FPCA 15/33



2. FPCA for discretely observed data

Main results

Let Q(n, N, h) = {k : |A| < nk/2, h*k?32¢ < C}, denote
m:=max{k : ke Q(n, N, h)}. If *m?3+2¢ = O(1),

2a+2 2a+2

-0, "tz = 0, h*m?2*2 0, then P(Q) — 1, for all k < m,

2
E|dx - ¢l 5, & {1+(kﬁa }+ 1+ Wa)Jr A p2e+2

optimal rateé fully observed ca

variance term caused by kernel smopthe

error caused by decaying eigengaps

— bias term caused by kernel smoother
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2. FPCA for discretely observed data

Phase transition

Let m e N, satisfies (M.1). For all k < m and let

@ IfN > k?,
k2 k(4a+2c+2)/5

E(|ox — dx]?) § —
(”¢k gbk” ) n + (nN)4/5
In addition, if N > n'/*ka*<12=2 ' E(|| i — di|?) S k3/n.

@ If N =o(k?),
k2a+2 k(83+2c+2)/5

niN2 + (nN2)4/5 ’

E(|éx - #k]°) $
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2. FPCA for discretely observed data

Phase transition

@ Minimax optimality
— For fixed k, this becomes the optimal 1-d rate n™*(1 + (Nh)™1) + h*;
— For k — oo, if N 2 max{k?, n"/*k®*<2-2} ' E(|dx — ¢x|?) < k*/n.

@ For the Fourier basis with ¢ =2
— Fixed k, phase transition occurs at n'/* (the same as mean and cov)
— Diverging k, phase transition occurs at n*/*k?!
— n'"*k> " is slightly larger than n'/*, reflecting efficiency of pooling
smoothing with evaluated difficulty in FPCA.

e Fundamental result for inverse models (e.g., FLR), where the optimal
bandwidth can be chosen as hopt(kmax)-
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4. Asymptotic normality of eigenvalues

Relative asymptotic normality

For m e N, satisfying h(m*¢ + m?) = o(1) and

Sn(m? + N)[m2a {1 + 2/ N)2} + m*(nNh) (1 + m®/N) + h*m?<*2] = o(1).

BYOVESY =t
5 (52 vk [ 6P Wetan) % Mo, e m
J

where

s _L[(N-2)(N-3)E(&)) 4N -2) E{G(IXei]” + %)}
"“n| N(N-1) A2 N(N-1) \2
2 E{(IX¢]* + %)%}
TN(N-T1) Y ‘1]'
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4. Asymptotic normality of eigenvalues

Phase transition

Corollary 4.1

@ If N\ — oo, /A2 ,}’A”(;s}”(u)qu(u)du»o,4 2
A=A\ d E(gj)_)‘j
AT S a0 ).
ﬁ( Aj ) N( 5
@ IfN) — G,

)\. _ )\ 1-h
ﬁ(fjf—zAjaf(fF/h qSJQ)(u)(bj(u)du)

= (0' BN | EGUXGI° R0} | 21X +a§)z}).
)\j C1>\J Cl

@ IFN) —0,

1-h
—2)\j0'f<h2/; QSJ(.z)(u)gbj(u)du)

2N
"N-1

< N (0 5 ELUX P +05)%)).
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4. Asymptotic normality of eigenvalues

Uniform convergence of eigenfunctions

Theorem 4

Let kmax € N, satisfy hkmax < 1, h4k23+2c <1 and P(Q,) = 1 with

max

u = {IAHS < M /20 [B]lcokiax < 1, [ Al s ki < 1}, for k < Kmax,

max

E

o L I/r\]//’; h‘% + Bk log k.

n

@ When 3 >5/2, the truncation bias is dominated by the other terms.
o When N is sufficiently large, we may obtain the optimal uniform rate.
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5. Application in functional linear regression

Functional linear regression

@ Y;: scalar response
Y, - [rX,-(t)B(t)dt+5,-
BeL£2[0,1], Ee; =0 and Ee? < co.

8= bion, |be| < Ck™, b>aj2+1
k=1

Plug-in method (Hall and Horowitz, 2007):
m. [1D o\
AT <‘ > YiXi, ¢j>¢j(U)
j=1 miz1

o To suppress the truncation bias: m = n'/(3+20) oo
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Timeline: theory of FLR

Function on function regression based on sparse FPCA

20052 (a0, Miiller and Wang, 2005).

2007 .- The optimal rate of FLM for fully observed data (Hall
and Horowitz, 2007).

2010 The optimal estimation and prediction of FLM for fully

1 observed data by RKHS (Cai and Yuan, 2010 and 2012).

The optimal rate of fGLM for fully observed data by

2012 ----¢ FPCA and change of measure (Dou, Pollard and Zhou,
2012).

2022 ... Phase transition in FLM for discrete observed data by

improved FPCA results (Zhou, Yao and Zhang, 2022).
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Application in FLR

@ Apply our results in the Plug-in estimator,

b>a-c b<a-c
Sampling rate 13- 82 Sampling rate 13- B
N > n%+% nlﬁﬁ N > n%+% nilgg
nﬁ <N < nZEfZE (nN) iﬁgifl n3:§;fc <N < nﬁ (nN) (21a_+22bb)
N < nﬁ (nN2 sﬁgif)c N < n% (nNz);g-%l-;i-?:
@ The transition point is slightly larger than n'/* but smaller than n'/2,

reflecting the elevated difficulty due to FPC regularization.
@ Result improved compared to Zhou, Yao and Zhang (2022).
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Uniform convergence of covariance

@ Uniform convergence rate of
e -
L(s,t) = X1 vi Digjeren, K (ATS) K (%) Xij Xit,
o Discretization: Let x(p) be an mesh grid on [0, 1]? with grid size n™"

sup |L(s,t) -EL(s,t)[< sup |L(s, t)—EL(s, t)|+0p
s,te[0,1] s, tex(y)

@ Truncation:

) =SS (22 () v

@ Bernstein inequality:

M2b2
P(sup|L*(s,t) —EL*(s,t)| > Mb,) < 2n” exp (— n )
s, t

M;,b2/log n+2B'"MZB,/n

with b, = {log(n) [S7y Ni (N; = 1) v2h2 + £y N; (N; = 1) (N; = 2) v2h3+
S0 Ny (N; = 1) (N; = 2) (N; - 3) v ]} 7% and B, = by[n/ log(n)].
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Issue with uniform convergence

o Assume E|X|2) < oo, the following is needed to suppress the
truncation bias (Li and Hsing, 2010, Zhang and Wang (2016)),

—> 00,

log n )2/’31

(N72h* + N7h* + h*) ( :

o For sparse case N/(n/logn)** >0 and h = (nN?/logn)~/°, let
N = nT/*

N2

e For dense case N/(n/logn)** 2 C and h = (n/logn)~'/* this leads
to a contradiction

n

- 00— 3>

h? (Iog n)z/ﬁ_l

1-7°

ﬁ (Iogn)Q/B’1 P (Iogn)z/ﬁ 0
N2 n n
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Double truncation

@ The bound L} (s,t) < B,/n is too loose.

e Denote Ji(s) =h ' YN K ( T’;,_S), given M >0

P (Ji(s) > M) < exp(-MNh/3)

h2L (s, 8)
12 Ti,—s T, —t
= T (22 R (220 XL, x
nN(N_]') 1SI1*Z/2£N ( h h Rl (|X,/1X,/2\SB,,)
1 N
Sbp————Ji i(t).
_BnnN—]_J(S)J( )

o P (L7 (s, )] > Byh?LAME) < 2exp(~MNh/3).

@ Double truncation: Zf(s, t) =L (s, t)_
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o After twice truncation C.(s, t) = h2 X7, L¥(s, t).

IE[ sup |CA'(s,t)—IECA'(s,t)|:|SIE|: sup |C~;(s,t)—IE5*(s,t)|:|

s,te[0,1] (s.t)ex(p)

+ | E|D; + D5 +-+ E|F; + F
plnn 1 1 5 .3
<Const. (1+—h)+B,,fM plnn|+
n

n

+-+ Const.n2”(1+%)exp(—MNh/ﬁ) .

@ We can choose larger B, to eliminate the model bias @D
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Uniform convergence of covariance

@ We propose a double truncation technique, and derive a sharper
bound for the truncated bias (details).

Theorem 5

E{ sup |C(s, t) -EC(s, t)|}

s,te[0,1]
Inn|*"% Inn>%
- db —r h 5
n Nh
@ When /3 > 3, the truncation bias ( ) is dominated by main term

(green) for all N.
@ \/log n/n-convergence can be obtained for dense data, where the

phase transition occurs when N > (n/log n)/*.
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Uniform convergence of eigenfunctions

Theorem 6

Let kmax € N, satisfy hkmax < 1, h4k23+2c <1 and P(Q,) = 1 with

max

u = {IAHS < M /20 [B]lcokiax < 1, [ Al s ki < 1}, for k < Kmax,

max

E

o L I/r\]//’; h‘% + Bk log k.

n

@ When 3 >5/2, the truncation bias is dominated by the other terms.
o When N is sufficiently large, we may obtain the optimal uniform rate.
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